

# WJEC England Biology A Level

# SP C2 06: Investigation of continuous variation in a species

Practical notes

🕟 www.pmt.education

▶ Image: Contraction PMTEducation



#### Introduction

**Continuous variation** produces characteristics which **do not** fall into discrete categories, instead showing a **continuous range** e.g. height, weight. It can be represented by a **frequency histogram** which forms an approximately **normal** curve.

The means of two polygenic characteristics which show continuous variation can be compared using Student's t-test (unpaired).

# Equipment

- Ruler
- 15 ivy leaves growing in bright conditions
- 15 ivy leaves growing in dark conditions

#### **Risk assessment**

| Hazard     | Risk              | Precaution                         | Emergency                                                       |
|------------|-------------------|------------------------------------|-----------------------------------------------------------------|
| Ivy leaves | Allergic reaction | Use non-latex<br>disposable gloves | Run the affected area under cold water; seek medical assistance |
| Berries    | Poisonous         | Do not ingest                      | Seek medical assistance                                         |

## Method

1. Use a ruler to measure the **maximum width** of each leaf. Calculate the **mean width** of each sample of ivy leaves. Record your results in a suitable format.

▶ Image: PMTEducation

- 2. Plot a **frequency histogram** for each data sample to confirm that the distribution is approximately **normal**.
- 3. Calculate each sample's standard deviation using:

$$s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}}$$

🕟 www.pmt.education



- 4. Use **Student's t-test** to determine whether there is a **statistically significant difference** between the **means** of the two samples:
  - a. Identify the null hypothesis
  - b. Calculate t
  - c. Work out the degrees of freedom
  - d. Find the critical value and test the significance

$$t = \frac{|\overline{x_1} - \overline{x_2}|}{\sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}}$$

where...

 $|\overline{X_1} - \overline{X_2}|$  is the difference between the two mean values

 $S_1^2$  and  $S_2^2$  are the squares of the samples' standard deviations

 $n_1$  and  $n_2$  are the total number of readings in each sample

## Worked example

| Maximum width of ivy leaf (mm) |                 |  |  |  |
|--------------------------------|-----------------|--|--|--|
| Bright conditions              | Dark conditions |  |  |  |
| 8                              | 18              |  |  |  |
| 8                              | 16              |  |  |  |
| 10                             | 15              |  |  |  |
| 9                              | 17              |  |  |  |
| 11                             | 17              |  |  |  |
| 7                              | 20              |  |  |  |
| 9                              | 21              |  |  |  |
| 10                             | 19              |  |  |  |
| 10                             | 17              |  |  |  |
| 10                             | 18              |  |  |  |
| 12                             | 18              |  |  |  |
| 9                              | 18              |  |  |  |
| 11                             | 16              |  |  |  |
| 11                             | 18              |  |  |  |
| 10                             | 19              |  |  |  |
| Mean = 9.67                    | Mean = 17.80    |  |  |  |

▶ Image: PMTEducation

1. Use a ruler to measure the maximum width of each leaf. Calculate the mean width of each sample of ivy leaves. Record your results in a suitable format.



2. Plot a frequency histogram for each data sample to confirm that the distribution is approximately normal.



#### 3. Calculate each sample's standard deviation

| Leaves growing in bright conditions (1) | Width (mm) | (x - x̄) | (x - x̄) <sup>2</sup> |
|-----------------------------------------|------------|----------|-----------------------|
| 1                                       | 8          | -1.67    | 2.7889                |
| 2                                       | 8          | -1.67    | 2.7889                |
| 3                                       | 10         | 0.33     | 0.1089                |
| 4                                       | 9          | -0.67    | 0.4489                |
| 5                                       | 11         | 1.33     | 1.7689                |
| 6                                       | 7          | -2.67    | 7.1289                |
| 7                                       | 9          | -0.67    | 0.4489                |
| 8                                       | 10         | 0.33     | 0.1089                |
| 9                                       | 10         | 0.33     | 0.1089                |
| 10                                      | 10         | 0.33     | 0.1089                |
| 11                                      | 12         | 2.33     | 5.4289                |
| 12                                      | 9          | -0.67    | 0.4489                |
| 13                                      | 11         | 1.33     | 1.7689                |
| 14                                      | 11         | 1.33     | 1.7689                |
| 15                                      | 10         | 0.33     | 0.1089                |
| Mean                                    | 9.67       |          | ∑ <b>=</b> 25.3335    |

$$s_1 = \sqrt{\frac{\sum(x - \bar{x})^2}{n - 1}} = \sqrt{\frac{25.3335}{14}} = 1.35$$

0

▶ Image: PMTEducation



| Leaves growing in dark conditions (2) | Width (mm) | (x - x̄) | (x - x̄) <sup>2</sup> |
|---------------------------------------|------------|----------|-----------------------|
| 1                                     | 18         | 0.2      | 0.04                  |
| 2                                     | 16         | -1.8     | 3.24                  |
| 3                                     | 15         | -2.8     | 7.84                  |
| 4                                     | 17         | -0.8     | 0.64                  |
| 5                                     | 17         | 0.8      | 0.64                  |
| 6                                     | 20         | 2.2      | 4.84                  |
| 7                                     | 21         | 3.2      | 10.24                 |
| 8                                     | 19         | 1.2      | 1.44                  |
| 9                                     | 17         | -0.8     | 0.64                  |
| 10                                    | 18         | 0.2      | 0.04                  |
| 11                                    | 18         | 0.2      | 0.04                  |
| 12                                    | 18         | 0.2      | 0.04                  |
| 13                                    | 16         | -1.8     | 3.24                  |
| 14                                    | 18         | 0.2      | 0.04                  |
| 15                                    | 19         | 1.2      | 1.44                  |
| Mean                                  | 17.80      |          | ∑ <b>=</b> 34.40      |

$$s_2 = \sqrt{\frac{\sum(x - \bar{x})^2}{n - 1}} = \sqrt{\frac{34.4}{14}} = 1.57$$

#### 4. a. Identify the null hypothesis

 $\rm H_{0}$  - there is no statistically significant difference between the mean width of ivy leaves growing in bright conditions and the mean width of ivy leaves growing in dark conditions

▶ Image: Second Second

b. Calculate t

$$t = \frac{|\overline{X_1} - \overline{X_2}|}{\sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}} = \frac{8.13}{\sqrt{\left(\frac{1.8225}{15}\right) + \left(\frac{2.4649}{15}\right)}} = 15.20$$

c. Work out the degrees of freedom (df =  $n_1 + n_2 - 2$ )

df = 15 + 15 - 2 = 28

d. Find the critical value and test the significance

www.pmt.education



Probability of 0.05, df of 28, critical value for  $X^2 = 2.048$ 

#### 15.200 > 2.048

The null hypothesis is rejected.

There is a statistically significant difference between the mean width of ivy leaves growing in bright conditions and the mean width of ivy leaves growing in dark conditions.

O