WJEC England Biology A Level

SP C2 06: Investigation of continuous variation in a species
 Practical notes

Introduction

Continuous variation produces characteristics which do not fall into discrete categories, instead showing a continuous range e.g. height, weight. It can be represented by a frequency histogram which forms an approximately normal curve.

The means of two polygenic characteristics which show continuous variation can be compared using Student's t-test (unpaired).

Equipment

- Ruler
- 15 ivy leaves growing in bright conditions
- 15 ivy leaves growing in dark conditions

Risk assessment

Hazard	Risk	Precaution	Emergency
Ivy leaves	Allergic reaction	Use non-latex disposable gloves	Run the affected area under cold water; seek medical assistance
Berries	Poisonous	Do not ingest	Seek medical assistance

Method

1. Use a ruler to measure the maximum width of each leaf. Calculate the mean width of each sample of ivy leaves. Record your results in a suitable format.
2. Plot a frequency histogram for each data sample to confirm that the distribution is approximately normal.
3. Calculate each sample's standard deviation using:
$s=\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}-1}}$
4. Use Student's t-test to determine whether there is a statistically significant difference between the means of the two samples:
a. Identify the null hypothesis
b. Calculate t
c. Work out the degrees of freedom
d. Find the critical value and test the significance

$$
t=\frac{\left|\overline{x_{1}}-\overline{x_{2}}\right|}{\sqrt{\left(\frac{s_{1}{ }^{2}}{n_{1}}\right)+\left(\frac{s_{2}{ }^{2}}{n_{2}}\right)}}
$$

where...
$\left|\overline{X_{1}}-\overline{X_{2}}\right|$ is the difference between the two mean values
$\mathrm{S}_{1}{ }^{2}$ and $\mathrm{S}_{2}{ }^{2}$ are the squares of the samples' standard deviations
n_{1} and n_{2} are the total number of readings in each sample

Worked example

1. Use a ruler to measure the maximum width of each leaf. Calculate the mean width of each sample of ivy leaves. Record your results in a suitable format.

Maximum width of ivy leaf (mm)	
Bright conditions	Dark conditions
8	18
8	16
10	15
9	17
11	17
7	20
9	21
10	19
10	17
10	18
12	18
9	18
11	16
11	18
10	19
Mean 9.67	Mean $=17.80$

2. Plot a frequency histogram for each data sample to confirm that the distribution is approximately normal.

3. Callculate each sample's standard deviation

Leaves growing in bright conditions (1)	Width (mm)	$(x-\overline{\mathbf{x}})$	$(x-\overline{\mathrm{x}})^{2}$
1	8	-1.67	2.7889
2	8	-1.67	2.7889
3	10	0.33	0.1089
4	9	-0.67	0.4489
5	11	1.33	1.7689
6	7	-2.67	7.1289
7	9	-0.67	0.4489
8	10	0.33	0.1089
9	10	0.33	0.1089
10	10	0.33	0.1089
11	12	2.33	5.4289
12	9	-0.67	0.4489
13	11	1.33	1.7689
14	10	1.33	1.7689
15	9.67	0.33	0.1089
Mean			$\sum=25.3335$

$s_{1}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{25.3335}{14}}=1.35$

Leaves growing in dark conditions (2)	Width (mm)	$(x-\overline{\mathrm{x}})$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
1	18	0.2	0.04
2	16	-1.8	3.24
3	15	-2.8	7.84
4	17	-0.8	0.64
5	17	0.8	0.64
6	20	2.2	4.84
7	21	3.2	10.24
8	19	1.2	1.44
9	17	-0.8	0.64
10	18	0.2	0.04
11	18	0.2	0.04
12	18	0.2	0.04
13	16	-1.8	3.24
14	18	0.2	0.04
15	19	1.2	1.44
Mean	17.80		$\Sigma=34.40$

$s_{2}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{34.4}{14}}=1.57$

4. a. Identify the null hypothesis

H_{0} - there is no statistically significant difference between the mean width of ivy leaves growing in bright conditions and the mean width of ivy leaves growing in dark conditions
b. Calculate t

$$
t=\frac{\left|\overline{X_{1}}-\overline{X_{2}}\right|}{\sqrt{\left(\frac{\mathrm{s}_{1}^{2}}{\mathrm{n}_{1}}\right)+\left(\frac{\mathrm{s}_{2}^{2}}{\mathrm{n}_{2}}\right)}}=\frac{8.13}{\sqrt{\left(\frac{1.8225}{15}\right)+\left(\frac{2.4649}{15}\right)}}=15.20
$$

c. Work out the degrees of freedom (df $=n_{1}+n_{2}-2$)
$\mathrm{df}=15+15-2=28$
d. Find the critical value and test the significance

Probability of 0.05 , df of 28 , critical value for $\mathrm{X}^{2}=2.048$

15.200 > 2.048

The null hypothesis is rejected.

There is a statistically significant difference between the mean width of ivy leaves growing in bright conditions and the mean width of ivy leaves growing in dark conditions.

